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SUMMARY

Numerical calculations of the 2-D steady incompressible driven cavity �ow are presented. The Navier–
Stokes equations in streamfunction and vorticity formulation are solved numerically using a �ne uniform
grid mesh of 601× 601. The steady driven cavity �ow solutions are computed for Re6 21 000 with a
maximum absolute residuals of the governing equations that were less than 10−10. A new quaternary
vortex at the bottom left corner and a new tertiary vortex at the top left corner of the cavity are observed
in the �ow �eld as the Reynolds number increases. Detailed results are presented and comparisons are
made with benchmark solutions found in the literature. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: steady 2-D incompressible N–S equations; driven cavity �ow; �ne grid solutions; high
Reynolds numbers

1. INTRODUCTION

Numerical methods for 2-D steady incompressible Navier–Stokes (N–S) equations are often
tested for code validation, on a very well known benchmark problem; the lid-driven cavity
�ow. Due to the simplicity of the cavity geometry, applying a numerical method on this �ow
problem in terms of coding is quite easy and straight forward. Despite its simple geometry, the
driven cavity �ow retains a rich �uid �ow physics manifested by multiple counter rotating
recirculating regions on the corners of the cavity depending on the Reynolds number. In
the literature, it is possible to �nd di�erent numerical approaches which have been applied
to the driven cavity �ow problem [1–34]. Though this �ow problem has been numerically
studied extensively, still there are some points which are not agreed upon. For example;
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(1) an interesting point among many studies is that di�erent numerical solutions of cavity
�ow yield about the same results for Re6 1000 however, start to deviate from each other for
larger Re, (2) also another interesting point is that while some studies predict a periodic �ow
at a high Reynolds number, some others present steady solutions for even a higher Reynolds
number. The objective of this work is then to investigate these two points and present accurate
very �ne grid numerical solutions of steady 2-D driven cavity �ow.
Among the numerous studies found in the literature, we will give a brief survey about some

of the signi�cant studies that uses di�erent types of numerical methods on the driven cavity
�ow. In doing so the emphasis will be given on three points; on the numerical method used,
on the spatial order of the numerical solution and on the largest Reynolds number achieved.
Recently, Barragy and Carey [2] have used a p-type �nite element scheme on a 257× 257

strongly graded and re�ned element mesh. They have obtained a highly accurate (�h8 order)
solutions for steady cavity �ow solutions up to Reynolds numbers of Re=12500. Although
Barragy and Carey [2] have presented qualitative solution for Re=16000 they concluded that
their solution for Re=16000 was under-resolved and needed a greater mesh size.
Botella and Peyret [6] have used a Chebyshev collocation method for the solution of the lid-

driven cavity �ow. They have used a subtraction method of the leading terms of the asymptotic
expansion of the solution of the N–S equations in the vicinity of the corners, where velocity
is discontinuous, and obtained a highly accurate spectral solutions for the cavity �ow with a
maximum of grid mesh of N =160 (polynomial degree) for Reynolds numbers Re6 9000.
They stated that their numerical solutions exhibit a periodic behaviour beyond this Re.
Schreiber and Keller [26] have introduced an e�cient numerical technique for steady vis-

cous incompressible �ows. The non-linear di�erential equations are solved by a sequence
of Newton and chord iterations. The linear systems associated with the Newton iteration is
solved by LU-factorization with partial pivoting. Applying repeated Richardson extrapolation
using the solutions obtained on di�erent grid mesh sizes (maximum being 180× 180), they
have presented high-order accurate (�h8 order in theory) solutions for Reynolds numbers
Re6 10 000.
Benjamin and Denny [5] have used a method of relaxing the algebraic equations by means

of the ADI method, with a non-uniform iteration parameter. They have solved the cavity �ow
for Re6 10 000 with three di�erent grid mesh sizes (maximum being 101× 101) and used a
�hn extrapolation to obtain the values when �h→ 0.
Wright and Gaskell [34] have applied the block implicit multigrid method (BIMM) to the

SMART and QUICK discretizations. They have presented cavity �ow results obtained on a
1024× 1024 grid mesh for Re6 1000.
Nishida and Satofuka [22] have presented a new higher order method for simulation of the

driven cavity �ow. They have discretized the spatial derivatives of the N–S equations using
a modi�ed di�erential quadrature (MDQ) method. They have integrated the resulting system
of ODEs in time with fourth order Runge–Kutta–Gill (RKG) scheme. With this they have
presented spatially �h10 order accurate solutions with grid size of 129× 129 for Re6 3200.
Liao [19], and Liao and Zhu [20], have used a higher order streamfunction–vorticity bound-

ary element method (BEM) formulation for the solution of N–S equations. With this they have
presented solutions up to Re=10000 with a grid mesh of 257× 257.
Hou et al. [17] have used lattice Boltzmann method for simulation of the cavity �ow.

They have used 256× 256 grid points and presented solutions up to Reynolds numbers of
Re=7500.
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Goyon [13] have solved the streamfunction and vorticity equations using Incremental Un-
knowns. They have presented steady solutions for Re6 7500 on a maximum grid size of
256× 256.
Rubin and Khosla [25] have used the strongly implicit numerical method with 2× 2 cou-

pled streamfunction–vorticity form of the N–S equations. They have obtained solutions for
Reynolds numbers in the range of Re6 3000 with a grid mesh of 17× 17.
Ghia et al. [12] later have applied a multi-grid strategy to the coupled strongly implicit

method developed by Rubin and Khosla [25]. They have presented solutions for Reynolds
numbers as high as Re=10000 with meshes consisting of as many as 257× 257 grid points.
Gupta [15] has used a fourth (�h4) order compact scheme for the numerical solution of

the driven cavity �ow. He has used a 9 point (3× 3) stencil in which the streamfunction and
vorticity equations are approximated to fourth order accuracy. He has used point-SOR type
of iteration and presented steady cavity �ow solutions for Re6 2000 with a maximum of
41× 41 grid mesh.
Li et al. [18] have used a fourth (�h4) order compact scheme which had a faster conver-

gence than that of Gupta [15]. They have solved the cavity �ow with a grid size of 129× 129
for Re6 7500.
Bruneau and Jouron [7] have solved the N–S equations in primitive variables using a full

multigrid-full approximation storage (FMG-FAS) method. With a grid size 256× 256, they
have obtained steady solutions for Re6 5000.
Grigoriev and Dargush [14] have presented a BEM solution with improved penalty function

technique using hexagonal subregions and they have discretized the integral equation for each
subregion as in FEM. They have used a non-uniform mesh of 5040 quadrilateral cells. With
this they were able to solve driven cavity �ow up to Re=5000.
Aydin and Fenner [1] have used BEM formulation with using central and upwind �nite

di�erence scheme for the convective terms. They have stated that their formulation lost its
reliability for Reynolds numbers greater than 1000.
To the authors best knowledge, in all these studies among with other numerous papers

found in the literature, the maximum Reynolds number achieved for the 2-D steady incom-
pressible �ow in a lid-driven cavity is Re=12500 and is reported by Barragy and Carey [2].
Although Barragy and Carey [2] have presented solutions for Re=16000, their solution for
this Reynolds number display oscillations related to boundary layer resolution issues due to a
coarse mesh. Nallasamy and Prasad [21] have presented steady solutions for Reynolds num-
bers up to Re6 50 000, however, their solutions are believed to be inaccurate as a result of
excessive numerical dissipation caused by their �rst order upwind di�erence scheme.
A very brief discussion on computational as well as experimental studies on the lid-driven

cavity �ow can be found in Shankar and Deshpande [27].
Many factors a�ect the accuracy of a numerical solution, such as, the number of grids

in the computational mesh (�h), and the spatial discretization order of the �nite di�erence
equations, and also the boundary conditions used in the solution.
It is an obvious statement that as the number of grids in a mesh is increased (smaller �h)

a numerical solution gets more accurate. In this study the e�ect of number of grid points
in a mesh on the accuracy of the numerical solution of driven cavity �ow is investigated,
especially as the Reynolds number increases. For this, the governing N–S equations are solved
on progressively increasing number of grid points (from 128× 128 to 600× 600) and the
solutions are compared with the highly accurate benchmark solutions found in the literature.
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Order of spatial discretization is another factor on the accuracy of a numerical solution.
Finite element and spectral methods provide high spatial accuracy. This study also investi-
gates the e�ect of spacial accuracy on the numerical solution of driven cavity �ow. For this,
following [26], repeated Richardson extrapolation is used and then the extrapolated results are
compared with the benchmark solutions.
Another factor on the accuracy of a numerical solution is the type and the order of the nu-

merical boundary conditions used in computation. For driven cavity �ow, this subject was brie�y
discussed by Weinan and Jian-Guo [32], Spotz [28], Napolitano et al. [35] and also by Gupta
and Manohar [16].
Until Barragy and Carey [2], many studies have presented steady solutions of driven cavity

�ow for Re=10000 [5, 12, 20, 26]. They [2] have presented solutions for Re=12500. In all
these studies that have presented high Reynolds number numerical solutions, the largest grid
size used was 256× 256. In this study, the grid size will be increased up to 600× 600 and
the e�ect of the grid size on the largest computable Reynolds number solution of the driven
cavity �ow will be investigated.
This paper presents accurate, very �ne grid (600× 600) numerical solutions of 2-D steady

incompressible �ow in a lid-driven cavity for Reynolds numbers up to Re=21000. A detailed
comparisons of our results with mainly the studies mentioned above as well as with other
studies not mentioned here, will be done.

2. NUMERICAL METHOD

For two-dimensional and axi-symmetric �ows it is convenient to use the streamfunction ( )
and vorticity (!) formulation of the Navier–Stokes equations. In non-dimensional form, they
are given as
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where, Re is the Reynolds number, and x and y are the Cartesian coordinates. The N–S
equations are nonlinear, and therefore need to be solved in an iterative manner. In order to
have an iterative numerical algorithm, pseudo time derivatives are assigned to these Equations
(1) and (2) such as
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Since we are seeking a steady solution, the order of the pseudotime derivatives will not
a�ect the �nal solution. Therefore, an implicit Euler time step is used for these pseudotime
derivatives, which is �rst order (�t) accurate. Also for the non-linear terms in the vorticity
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equation, a �rst order (�t) accurate approximation is used and the governing Equations (3)
and (4) are written as follows:
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In operator notation the above equations look like the following.
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The above equations are in fully implicit form where each equation requires the solution of
a large banded matrix which is not computationally e�cient. Instead of solving the Equations
(7) and (8) in fully implicit form, more e�ciently, we spatially factorize the equations, such as
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Here, we split the single LHS operators into two operators, where each only contains deriva-
tives in one direction. The only di�erence between Equations (7) and (8) and (9) and (10)
are the �t2 terms produced by the factorization. The advantage of this process is that each
equation now requires the solution of a tridiagonal system, which is numerically more e�cient.
As the solution converges to the steady state solution, the �t2 terms due to the factorization

will not become zero and will remain in the solution. To illustrate this, Equation (9) can be
written in explicit form as
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As the solution converges to a steady state, �n+1 becomes equal to �n and they cancel each
other from the above equation and at convergence, Equation (11) therefore appears as the
following
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In Equation (12), there is no guarantee that the RHS, which is the consequence of the factor-
ization, will be small. Only a very small time step (�t) will ensure that the RHS of Equation
(12) will be close to zero. This, however, will slow down the convergence. In addition, the
product may not be small since @4 =@x2@y2 can be O[1=�t] or higher in many �ow situations.
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In order to overcome this problem, we add a similar term at the previous time level to the
RHS of Equation (11) to give the following �nite di�erence form:
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As a result, at steady state,  n+1 converges to  n and @4 n+1=@x2@y2 converges to @4 n=@x2@y2,
so that they cancel each out, and the �nal solution converges to the correct physical form
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We would like to emphasize that the added �t2 term on the RHS is not an arti�cial
numerical di�usion term. Such terms are often used to stabilize the numerical schemes so
that convergence can be achieved. Here, the added �t2 term on the RHS is not meant to
stabilize the numerical scheme. The only reason for this approach is to cancel out the terms
introduced by factorization so that the equations are the correct physical representation at the
steady state.
One of the most popular spatially factorized schemes is undoubtedly the Beam and Warming

[4] method. In that method, the equations are formulated in delta (�) form. The main advan-
tage of a delta formulation in a steady problem is that there will be no second order (�t2)
terms due to the factorization in the solution at the steady state. However in our formula-
tion the second order (�t2) terms due to factorization will remain even at the steady state.
Adding a second order (�t2) term to the RHS of the equations to cancel out the terms pro-
duced by factorization, easily overcomes this problem. One of the main di�erences between
the presented formulation and a delta formulation is in the numerical treatment of the vorticity
equation. In a delta formulation of the vorticity equation, there appears �t order convection
and dissipation terms on the RHS (explicit side) of the numerical equations. In the presented
formulation, on the RHS of the equation there are no �t order terms. Instead cross derivative
terms (@4=@x2@y2, @3=@x2@y, @3=@x@y2, and @2=@x@y) appear on the RHS. Note that these terms
are �t2 order. Since �t is small, these �t2 terms are even smaller. Our extensive numeri-
cal tests showed that this approach has better numerical stability characteristics and is more
e�ective especially at high Reynolds numbers compared to a delta formulation of the steady
streamfunction and vorticity equations.
Applying the approach of removing second order terms due to factorization on the RHS,

to both Equations (9) and (10), the �nal form of the numerical formulation we used for the
solution of streamfunction and vorticity equation becomes
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The solution methodology for the two equations involves a two-level updating. First the
streamfunction equation is solved. For Equation (15), the variable f is introduced such that(
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In Equation (18) f is the only unknown. First, this equation is solved for f at each grid
point. Following this, the streamfunction variable ( ) is advanced into the new time level
using Equation (17). Next, the vorticity equation is solved. In a similar fashion for Equation
(16), the variable g is introduced such that(
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As with f, g is determined at every grid point using Equation (20), then vorticity variable
(!) is advanced into the next time level using Equation (19).
We note that, in this numerical approach the streamfunction and vorticity equations are

solved separately. Each equation is advanced into a next time level by solving two tridiagonal
systems, which allows the use of very large grid sizes easily. The method proved to be very
e�ective on �ow problems that require high accuracy on very �ne grid meshes [9, 10].

3. RESULTS AND DISCUSSION

The boundary conditions and a schematics of the vortices generated in a driven cavity �ow
are shown in Figure 1. In this �gure, the abbreviations BR, BL and TL refer to bottom
right, bottom left and top left corners of the cavity, respectively. The number following these
abbreviations refer to the vortices that appear in the �ow, which are numbered according to
size.
We have used the well-known Thom’s formula [30] for the wall boundary condition, such

that

 0 = 0

!0 =
−2 1
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− 2U
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(21)
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Primary Vortex
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BL2
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TL2

Figure 1. Schematic view of driven cavity �ow.

where subscript 0 refers to points on the wall and 1 refers to points adjacent to the wall, �h
refers to grid spacing and U refers to the velocity of the wall with being equal to 1 on the
moving wall and 0 on the stationary walls.
We note that, it is well understood [28, 32, 35, 36] that, even though Thom’s method is

locally �rst order accurate, the global solution obtained using Thom’s method preserves second
order accuracy. Therefore in this study, since three point second order central di�erence is used
inside the cavity and Thom’s method is used at the wall boundary conditions, the presented
solutions are second order accurate.
During our computations we monitored the residual of the steady streamfunction and vor-

ticity Equations (1) and (2) as a measure of the convergence to the steady state solution,
where the residual of each equation is given as
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The magnitude of these residuals is an indication of the degree to which the solution has
converged to steady state. In the limit these residuals would be zero. In our computations, for
all Reynolds numbers, we considered that convergence was achieved when for each Equations
(22) and (23) the maximum of the absolute residual in the computational domain (max(|R |)
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Table I. Comparison of the properties of the primary vortex; the maximum streamfunction value, the
vorticity value and the location of the centre, for Re=1000.

Spatial
Reference No Grid accuracy  ! x y

Present 401× 401 �h2 0.118585 2.062761 0.5300 0.5650
Present 513× 513 �h2 0.118722 2.064765 0.5313 0.5645
Present 601× 601 �h2 0.118781 2.065530 0.5300 0.5650
Present Extrapolated �h6 0.118942 2.067213 — —
Barragy and Carey Reference [2] 257× 257 p=8 0.118930 — — —
Botella and Peyret Reference [6] N =128 N =128 0.1189366 2.067750 0.5308 0.5652
Botella and Peyret Reference [6] N =160 N =160 0.1189366 2.067753 0.5308 0.5652
Schreiber and Keller Reference [26] 100× 100 �h2 0.11315 1.9863 — —
Schreiber and Keller Reference [26] 121× 121 �h2 0.11492 2.0112 — —
Schreiber and Keller Reference [26] 141× 141 �h2 0.11603 2.0268 0.52857 0.56429
Schreiber and Keller Reference [26] Extrapolated �h6 0.11894 2.0677 — —
Wright and Gaskell Reference [34] 1024× 1024 �h2 0.118821 2.06337 0.5308 0.5659
Nishida and Satofuka Reference [22] 129× 129 �h8 0.119004 2.068546 0.5313 0.5625
Benjamin and Denny Reference [5] 101× 101 �h2 0.1175 2.044 — —
Benjamin and Denny Reference [5] Extrapolated High order 0.1193 2.078 — —
Li et al. Reference [18] 129× 129 �h4 0.118448 2.05876 0.5313 0.5625
Ghia et al. Reference [12] 129× 129 �h2 0.117929 2.04968 0.5313 0.5625
Bruneau and Jouron Reference [7] 256× 256 �h2 0.1163 — 0.5313 0.5586
Goyon Reference [13] 129× 129 �h2 0.1157 — 0.5312 0.5625
Vanka Reference [31] 321× 321 �h2 0.1173 — 0.5438 0.5625
Gupta Reference [15] 41× 41 �h4 0.111492 2.02763 0.525 0.575
Hou et al. Reference [17] 256× 256 �h2 0.1178 2.0760 0.5333 0.5647
Liao and Zhu Reference [20] 129× 129 �h2 0.1160 2.0234 0.5313 0.5625
Grigoriev and Dargush Reference [14] — — 0.11925 — 0.531 0.566

and max(|R!|)) was less than 10−10. Such a low value was chosen to ensure the accuracy
of the solution. At these residual levels, the maximum absolute di�erence in streamfunction
value between two time steps, (max(| n+1− n|)), was in the order of 10−16 and for vorticity,
(max(|!n+1−!n|)), it was in the order of 10−14. And also at these convergence levels, between
two time steps the maximum absolute normalized di�erence in streamfunction, (max(|( n+1−
 n)= n|)), and in vorticity, (max(|(!n+1 − !n)=!n|)), were in the order of 10−13, and 10−12

respectively.
We have started our computations by solving the driven cavity �ow from R=1000 to

Re=5000 on a 129× 129 grid mesh. With using this many number of grids, we could not
get a steady solution for Re=7500. The �rst natural conclusion was that the cavity �ow
may not be steady at Re=7500, and therefore steady solution may not be computable. Even
though we have used a pseudo-time iteration, the time evolution of the �ow parameters, either
vorticity or streamfunction values at certain locations, were periodic suggesting that the �ow
indeed may be periodic, backing up this conclusion. Besides, in the literature many studies
claim that the driven cavity �ow becomes unstable between a Reynolds number of 7000
and 8000, for example, Peng et al. [23], Fortin et al. [11] and Poliashenko and Aidun [24]
predict unstable �ow beyond Re of 7402, 7998.5 and 7763, respectively. However, on the
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Table II. Richardson extrapolation for streamfunction values at the primary vortex.

Re Grid  O(�h2)  O(�h4)  O(�h6)

1000 401× 401 −0.118585
513× 513 −0.118722 −0.118937
601× 601 −0.118781 −0.118939 −0.118942

2500 401× 401 −0.120493
513× 513 −0.120873 −0.121468
601× 601 −0.121035 −0.121469 −0.121470

5000 401× 401 −0.120145
513× 513 −0.120944 −0.122196
601× 601 −0.121289 −0.122213 −0.122233

7500 401× 401 −0.119178
513× 513 −0.120395 −0.122301
601× 601 −0.120924 −0.122341 −0.122386

10 000 401× 401 −0.118059
513× 513 −0.119690 −0.122245
601× 601 −0.120403 −0.122313 −0.122390

12 500 401× 401 −0.116889
513× 513 −0.118936 −0.122142
601× 601 −0.119831 −0.122229 −0.122326

15 000 401× 401 −0.115701
513× 513 −0.118162 −0.122017
601× 601 −0.119239 −0.122124 −0.122245

17 500 401× 401 −0.114507
513× 513 −0.117381 −0.121883
601× 601 −0.118641 −0.122016 −0.122167

20 000 401× 401 −0.113313
513× 513 −0.116596 −0.121739
601× 601 −0.118038 −0.121901 −0.122084

21 000 401× 401 −0.112837
513× 513 −0.116282 −0.121678
601× 601 −0.117797 −0.121855 −0.122056

other hand there were many studies [2, 5, 12, 20, 26] that have presented solutions for a higher
Reynolds number, Re=10000. This was contradictory. We then have tried to solve the same
case, Re=7500, with a larger grid size of 257× 257. This time we were able to obtain a
steady solution. In fact, with 257× 257 number of grids, we carry our steady computations up
to Re=12500. Barragy and Carey [2] have also presented steady solutions for Re=12500.
Interesting point was, when we tried to increase Re furthermore with the same grid mesh,
we have again obtained a periodic behaviour. Once again the natural conclusion was that the
steady solutions beyond this Re may not be computable. Having concluded this, we could
not help but ask the question what happens if we increase the number of grids furthermore.
In their study Barragy and Carey [2] have presented a steady solution for Re=16000. Their
solution for this Reynolds number displayed oscillations. They concluded that this was due
to a coarse mesh. This conclusion encouraged us to use larger grid size than 257× 257 in
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Table III. Richardson extrapolation for vorticity values at the primary vortex.

Re Grid !O(�h2) !O(�h4) !O(�h6)

1000 401× 401 −2.062761
513× 513 −2.064765 −2.067904
601× 601 −2.065530 −2.067579 −2.067213

2500 401× 401 −1.961660
513× 513 −1.967278 −1.976078
601× 601 −1.969675 −1.976096 −1.976117

5000 401× 401 −1.909448
513× 513 −1.921431 −1.940201
601× 601 −1.926601 −1.940451 −1.940732

7500 401× 401 −1.878523
513× 513 −1.896895 −1.925673
601× 601 −1.904883 −1.926282 −1.926969

10 000 401× 401 −1.853444
513× 513 −1.878187 −1.916945
601× 601 −1.888987 −1.917919 −1.919018

12 500 401× 401 −1.830890
513× 513 −1.862010 −1.910757
601× 601 −1.875618 −1.912072 −1.913557

15 000 401× 401 −1.809697
513× 513 −1.847199 −1.905943
601× 601 −1.863618 −1.907602 −1.909476

17 500 401× 401 −1.789348
513× 513 −1.833212 −1.901921
601× 601 −1.852447 −1.903975 −1.906294

20 000 401× 401 −1.769594
513× 513 −1.819761 −1.898343
601× 601 −1.841814 −1.900891 −1.903767

21 000 401× 401 −1.761828
513× 513 −1.814492 −1.896986
601× 601 −1.837672 −1.899768 −1.902909

order to obtain solutions for Reynolds numbers greater than 12 500. At this point, since the
focus was on the number of grids, we realized that among the studies that presented steady
solutions at very high Reynolds numbers [2, 5, 12, 20, 26], the maximum number of grids used
was 257× 257. Larger grid sizes have not been used at these high Reynolds numbers. This
was also encouraging us to use more grid points. We, then, decided to increase the number
of grids and tried to solve for Re=15000 with 401× 401 number of grids. This time we
were able to obtain a steady solution. This fact suggests that in order to obtain a numerical
solution for 2-D steady incompressible driven cavity �ow for Re¿ 12 500, a grid mesh with
more than 257× 257 grid points is needed. With using 401× 401 grid points, we continued
our steady computations up to Re=21000. Beyond this Re our computations again displayed
a periodic behaviour. This time the �rst natural thing came to mind was to increase the
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Figure 2. Streamline contours of primary and secondary vortices, Re=1000.

number of grids. We have tried to use 513× 513 grids, however again we could not get a
steady solution beyond Re=21000. Thinking that the increase in number of grids may not
be enough, we then again increased the number of grids and have used 601× 601 grids. The
situation was the same, and the maximum Reynolds number that we can obtain a steady
solution with using 601× 601 grids was Re=21000. We did not try to increase the number
of grids furthermore since the computations became time consuming. Whether or not steady
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Figure 3. Streamline contours of primary and secondary vortices, Re=5000.

computations of driven cavity �ow are possible beyond Re=21000 with grid numbers larger
than 601× 601, is still an open question.
One of the reasons, why the steady solutions of the driven cavity �ow at very high Reynolds

numbers become computable when �ner grids are used, may be the fact that as the number
of grids used increases, �h gets smaller, then the cell Reynolds number or so called Peclet
number de�ned as Rec= u�h=� decreases. This improves the numerical stability characteristics
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Figure 4. Streamline contours of primary and secondary vortices, Re=10 000.

of the numerical scheme used [29, 32], and allows high cavity Reynolds numbered solutions
computable. Another reason may be that fact that �ner grids would resolve the corner vortices
better. This would, then, help decrease any numerical oscillations that might occur at the
corners of the cavity during iterations.
We note that all the �gures and tables present the solution of the �nest grid size of 601× 601

unless otherwise stated.
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Figure 5. Streamline contours of primary and secondary vortices, Re=15 000.

The accuracy of a �nite di�erence solution is set by the mesh size, and by the spatial
order of the �nite di�erence equations and the boundary approximations. At low Reynolds
numbers (Re=1000), di�erent numerical method solutions found in the literature agree with
each other. However, the solutions at higher Reynolds numbers (Re¿1000) have noticeable
discrepancies. We believe it is mainly due to di�erent spatial orders and di�erent grid mesh
sizes and di�erent boundary conditions used in di�erent studies.
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Figure 6. Streamline contours of primary and secondary vortices, Re=20 000.

Table I tabulates the minimum streamfunction value, the vorticity value at the centre of
the primary vortex and also the centre location of the primary vortex for Re=1000 along
with similar results found in the literature with the most signi�cant ones are underlined. In
Table I among the most signi�cant (underlined) results, Schreiber and Keller [26] have used
Richardson extrapolation in order to achieve high spatial accuracy. For Re=1000 their ex-
trapolated solutions are �h6 order accurate and these solutions are obtained by using repeated
Richardson extrapolation on three di�erent mesh size solutions.
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Table IV. Comparison of the minimum streamfunction value, the vorticity value at the centre of the
primary vortex for various Reynolds numbers.

Re

2500 5000 7500 10 000 12 500

Present  −0.121470 −0.122233 −0.122386 −0.122390 −0.122326
! −1.976117 −1.940732 −1.926969 −1.919018 −1.913557

Barragy and Carey Reference [2]  −0.1214621 −0.122219 −0.1223803 −0.1223930 −0.1223584
! — — — — —

Schreiber and Keller Reference [26]  — — — −0.12292 —
! — — — −1.9263 —

Li et al. Reference [18]  — −0.120359 −0.1193791 — —
! — −1.92430 −1.91950 — —

Benjamin and Denny Reference [5]  — — — −0.1212 —
! — — — — —

Ghia et al. Reference [12]  — −0.118966 −0.119976 −0.119731 —
! — −1.86016 −1.87987 −1.88082 —

Liao and Zhu Reference [20]  — −0.1186 −0.1201 −0.1201 —
! — −1.9375 −1.9630 −1.9426 —

Hou et al. Reference [17]  — −0.1214 −0.1217 — —
! — — — — —

Grigoriev and Dargush Reference [14]  — −0.12209 — — —
! — — — — —

Following the same approach, we have solved the cavity �ow on three di�erent grid mesh
(401× 401, 513× 513 and 601× 601) separately for every Reynolds number (Re=1000–
21 000). Since the numerical solution is second order accurate, the computed values of stream-
function and vorticity have an asymptotic error expansion of the form

 (xi; yj) =  i; j + c1�h2 + c2�h4 + · · ·

!(xi; yj) =!i; j + d1�h2 + d2�h4 + · · · (24)

We can use Richardson extrapolation in order to obtain high-order accurate approximations
[26]. We have used repeated Richardson extrapolations using the three di�erent mesh size
solutions. The extrapolated values of the streamfunction and the vorticity at the centre of the
primary vortex are given in Tables II and III, respectively. The extrapolated results tabulated
in Tables II and III are, in theory, �h6 order accurate.
Looking back to Table I, for Re=1000, our extrapolated results are in very good agreement

with the extrapolated results of Schreiber and Keller [26]. In fact our extrapolated stream-
function value at the primary vortex di�ers only 0.013% and the vorticity value di�ers only
0.095% from the extrapolated results of Schreiber and Keller [26].
With spectral methods, very high spatial accuracy can be obtained with a relatively smaller

number of grid points. For this reason, the tabulated results from Botella and Peyret [6]
are believed to be very accurate. Our results are also in very good agreement such that our
extrapolated results di�ers 0.016% in the streamfunction value and 0.098% in the vorticity
value from the results of Botella and Peyret [6].
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Barragy and Carey [2] have only tabulated the location of the vortex centres and the
streamfunction values at these locations yet they have not presented any vorticity data. Nev-
ertheless, their solutions based on p-type �nite element scheme also have very high spatial
accuracy (�h8 order accurate). They have presented the maximum Reynolds number solutions
(Re=12500) for the cavity �ow, to the best of our knowledge, found in the literature. We will
show that the agreement between our results and results of Barragy and Carey [2] is excellent
through the whole Reynolds number range they considered (10006Re6 12 500). Comparing
solutions for Re=1000 in Table I, the di�erence is 0.022% in the streamfunction value.
Wright and Gaskell [34] have used a very �ne grid mesh with 1024× 1024 grid points in

their solutions. With this many grids their solution should be quite accurate. Their stream-
function and vorticity value are very close to our solutions with a di�erence of 0.113 and
0.114%, respectively.
Nishida and Satofuka [22] have presented higher order solutions in which for Re=1000

their solutions are �h8 order accurate. Comparing with our results we �nd a very good agree-
ment such that our extrapolated results di�ers 0.040% in streamfunction value and 0.136% in
vorticity value.
Grigoriev and Dargush [14] have solved the governing equations with a boundary element

method (BEM). They have only tabulated the streamfunction values and the location of the
centres of the primary and secondary vortices for driven cavity �ow for Reynolds numbers
up to 5000. Their solution for Re=1000 is quite accurate.
Benjamin and Denny [5] have used a �hn extrapolation to obtain the values when �h → 0

using the three di�erent grid mesh size solutions. Their extrapolated results are close to other
underlined data in Table I. It is quite remarkable that even a simple extrapolation produces
such good results.
Hou et al. [17] have simulated the cavity �ow by the lattice Boltzmann method. They have

presented solutions for Re6 7500 obtained by using 256× 256 lattice. However their results
have signi�cant oscillations in the two upper corners of the cavity. Especially their vorticity
contours have wiggles aligned with lattice directions, for Re¿ 1000.
Li et al. [18] have used a compact scheme and presented fourth order accurate (�h4) results

for a 129× 129 grid mesh. Ghia et al. [12] have used a second order method (�h2) with a
mesh size of 129× 129. These results, together with that of Goyon [13] and Liao and Zhu
[20], might be considered as somewhat under-resolved. Our calculations showed that for a
second order (�h2) spatial accuracy, even a 401× 401 grid mesh solutions can be considered
as under-resolved for Re=1000.
The results of Bruneau and Jouron [7] and Vanka [31] appear over-di�usive due to upwind

di�erencing they have used.
From all these comparisons we can conclude that even for Re=1000 higher order approx-

imations together with the use of �ne grids are necessary for accuracy.
Figures 2–6 show streamfunction contours of the �nest (601× 601) grid solutions, for var-

ious Reynolds numbers. These �gures exhibit the formation of the counter-rotating secondary
vortices which appear as the Reynolds number increases.
Table IV compares our computed streamfunction and vorticity values at the centre of the

primary vortex with the results found in the literature for various Reynolds numbers. The
agreement between our Richardson extrapolated results (�h6 order accurate) with results
of Barragy and Carey [2] based on p-type �nite element scheme (�h8 order accurate) is
quite remarkable. One interesting result is that the streamfunction value at the centre of the
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Figure 7. Computed u-velocity pro�les along a vertical line passing through the geometric centre of the
cavity at various Reynolds numbers.

primary vortex decreases at �rst as the Reynolds number increases until Re=10000, however
then starts to increase as the Reynolds number increases further. This behaviour was also
documented by Barragy and Carey [2].
In terms of quantitative results, Gupta and Manohar [16], stated that for the numerical

solutions of driven cavity �ow, the value of the streamfunction ( ) at the primary vortex
centre appears to be a reliable indicator of accuracy, where as the location of the vortex centre
(x and y) is limited by the mesh size, and the value of the vorticity (!) at the vortex centre
is sensitive to the accuracy of the wall boundary conditions. Nevertheless, the locations of the
primary and secondary vortices, as well as the values of the streamfunction ( ) and vorticity
(!) at these locations are presented in Table V. These are comparable with the solutions
of Barragy and Carey [2] and Ghia et al. [12]. It is evident that as the Reynolds number
increases, the centre of the primary vortex moves towards the geometric centre of the cavity.
Its location is almost invariant for Re¿ 17 500. Our computations indicate the appearance of
a quaternary vortex at the bottom left corner (BL3) at Reynolds number of 10 000. We would
like to note that, this quaternary vortex (BL3) did not appear in our solutions for Re=10000
with grid sizes less than 513× 513. This would suggest that, especially at high Reynolds
numbers, in order to resolve the small vortices appear at the corners properly, very �ne grids
have to be used. Moreover, our solutions indicate another tertiary vortex at the top left side
of the cavity (TL2) at Re=12500. These vortices (BL3 and TL2) were also observed by
Barragy and Carey [2].
Figures 7 and 8 present the u-velocity pro�les along a vertical line and the v-velocity

pro�les along a horizontal line passing through the geometric centre of the cavity respectively
and also Tables VI and VII tabulates u- and v-velocity values at certain locations respectively,
for future references. These pro�les are in good agreement with that of Ghia et al. [12] shown
by symbols in Figures 7 and 8.
We have solved the incompressible �ow in a driven cavity numerically. A very good

mathematical check on the accuracy of the numerical solution would be to check the continuity
of the �uid, as suggested by Aydin and Fenner [1], although this is done very rarely in driven
cavity �ow papers. We have integrated the u-velocity and v-velocity pro�les, considered in
Figures 7 and 8, along a vertical line and horizontal line passing through the geometric centre
of the cavity, in order to obtain the net volumetric �ow rate, Q, through these sections. Since
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Figure 8. Computed v-velocity pro�les along a horizontal line passing through the geometric centre of
the cavity at various Reynolds numbers.
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Table VI. Tabulated u-velocity pro�les along a vertical line passing through the geometric centre of the
cavity at various Reynolds numbers.

Re

y 1000 2500 5000 7500 10 000 12 500 15 000 17 500 20 000 21 000

1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.990 0.8486 0.7704 0.6866 0.6300 0.5891 0.5587 0.5358 0.5183 0.5048 0.5003
0.980 0.7065 0.5924 0.5159 0.4907 0.4837 0.4833 0.4850 0.4871 0.4889 0.4895
0.970 0.5917 0.4971 0.4749 0.4817 0.4891 0.4941 0.4969 0.4982 0.4985 0.4983
0.960 0.5102 0.4607 0.4739 0.4860 0.4917 0.4937 0.4937 0.4925 0.4906 0.4897
0.950 0.4582 0.4506 0.4738 0.4824 0.4843 0.4833 0.4811 0.4784 0.4754 0.4742
0.940 0.4276 0.4470 0.4683 0.4723 0.4711 0.4684 0.4653 0.4622 0.4592 0.4580
0.930 0.4101 0.4424 0.4582 0.4585 0.4556 0.4523 0.4492 0.4463 0.4436 0.4425
0.920 0.3993 0.4353 0.4452 0.4431 0.4398 0.4366 0.4338 0.4312 0.4287 0.4277
0.910 0.3913 0.4256 0.4307 0.4275 0.4243 0.4216 0.4190 0.4166 0.4142 0.4132
0.900 0.3838 0.4141 0.4155 0.4123 0.4095 0.4070 0.4047 0.4024 0.4001 0.3992
0.500 −0.0620 −0.0403 −0.0319 −0.0287 −0.0268 −0.0256 −0.0247 −0.0240 −0.0234 −0.0232
0.200 −0.3756 −0.3228 −0.3100 −0.3038 −0.2998 −0.2967 −0.2942 −0.2920 −0.2899 −0.2892
0.180 −0.3869 −0.3439 −0.3285 −0.3222 −0.3179 −0.3146 −0.3119 −0.3096 −0.3074 −0.3066
0.160 −0.3854 −0.3688 −0.3467 −0.3406 −0.3361 −0.3326 −0.3297 −0.3271 −0.3248 −0.3239
0.140 −0.3690 −0.3965 −0.3652 −0.3587 −0.3543 −0.3506 −0.3474 −0.3446 −0.3422 −0.3412
0.120 −0.3381 −0.4200 −0.3876 −0.3766 −0.3721 −0.3685 −0.3652 −0.3622 −0.3595 −0.3585
0.100 −0.2960 −0.4250 −0.4168 −0.3978 −0.3899 −0.3859 −0.3827 −0.3797 −0.3769 −0.3758
0.080 −0.2472 −0.3979 −0.4419 −0.4284 −0.4142 −0.4054 −0.4001 −0.3965 −0.3936 −0.3925
0.060 −0.1951 −0.3372 −0.4272 −0.4491 −0.4469 −0.4380 −0.4286 −0.4206 −0.4143 −0.4121
0.040 −0.1392 −0.2547 −0.3480 −0.3980 −0.4259 −0.4407 −0.4474 −0.4490 −0.4475 −0.4463
0.020 −0.0757 −0.1517 −0.2223 −0.2633 −0.2907 −0.3113 −0.3278 −0.3412 −0.3523 −0.3562
0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

the �ow is incompressible, the net volumetric �ow rate passing through these sections should
be equal to zero, Q=0. The u-velocity and v-velocity pro�les at every Reynolds number
considered are integrated using Simpson’s rule, then the obtained volumetric �ow rate values
are divided by a characteristic �ow rate, Qc, which is the horizontal rate that would occur
in the absence of the side walls (Plane Couette �ow), to help quantify the errors, as also
suggested by Aydin and Fenner [1]. In an integration process the numerical errors will add
up. Nevertheless, the volumetric �ow rate values (Q1 = | ∫ 10 u dy|=Qc and Q2 = | ∫ 10 v dx|=Qc)
tabulated in Table VIII are close to zero such that, even the largest values of Q1 = 0:000000705
and Q2 = 0:000002424 in Table VIII can be considered as Q1 ≈Q2 ≈ 0. This mathematical
check on the conservation of the continuity shows that our numerical solution is indeed very
accurate.
Distinctively than any other paper, Botella and Peyret [6] have tabulated highly accurate

Chebyshev collocation spectral vorticity data from inside the cavity, along a vertical line and
along a horizontal line passing through the geometric centre of the cavity, for Re=1000.
Comparing our solutions with theirs [6] in Figures 9 and 10, we �nd that the agreement with
Botella and Peyret [6] is remarkable, with the maximum di�erence between two solutions
being 0.18%.
Between the whole range of Re=1000 and the maximum Re found in the literature,

Re=12500, our computed results agreed well with the published results. Since there is no pre-
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Table VII. Tabulated v-velocity pro�les along a horizontal line passing through the geometric centre of
the cavity at various Reynolds numbers.

Re

x 1000 2500 5000 7500 10 000 12 500 15 000 17 500 20 000 21 000

1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.985 −0.0973 −0.1675 −0.2441 −0.2991 −0.3419 −0.3762 −0.4041 −0.4269 −0.4457 −0.4522
0.970 −0.2173 −0.3725 −0.5019 −0.5550 −0.5712 −0.5694 −0.5593 −0.5460 −0.5321 −0.5266
0.955 −0.3400 −0.5192 −0.5700 −0.5434 −0.5124 −0.4899 −0.4754 −0.4664 −0.4605 −0.4588
0.940 −0.4417 −0.5603 −0.5139 −0.4748 −0.4592 −0.4534 −0.4505 −0.4482 −0.4459 −0.4449
0.925 −0.5052 −0.5268 −0.4595 −0.4443 −0.4411 −0.4388 −0.4361 −0.4331 −0.4300 −0.4287
0.910 −0.5263 −0.4741 −0.4318 −0.4283 −0.4256 −0.4221 −0.4186 −0.4153 −0.4122 −0.4110
0.895 −0.5132 −0.4321 −0.4147 −0.4118 −0.4078 −0.4040 −0.4005 −0.3975 −0.3946 −0.3936
0.880 −0.4803 −0.4042 −0.3982 −0.3938 −0.3895 −0.3859 −0.3828 −0.3800 −0.3774 −0.3764
0.865 −0.4407 −0.3843 −0.3806 −0.3755 −0.3715 −0.3682 −0.3654 −0.3627 −0.3603 −0.3593
0.850 −0.4028 −0.3671 −0.3624 −0.3574 −0.3538 −0.3508 −0.3481 −0.3457 −0.3434 −0.3425
0.500 0.0258 0.0160 0.0117 0.0099 0.0088 0.0080 0.0074 0.0069 0.0065 0.0063
0.150 0.3756 0.3918 0.3699 0.3616 0.3562 0.3519 0.3483 0.3452 0.3423 0.3413
0.135 0.3705 0.4078 0.3878 0.3779 0.3722 0.3678 0.3641 0.3608 0.3579 0.3567
0.120 0.3605 0.4187 0.4070 0.3950 0.3885 0.3840 0.3801 0.3767 0.3736 0.3725
0.105 0.3460 0.4217 0.4260 0.4137 0.4056 0.4004 0.3964 0.3929 0.3897 0.3885
0.090 0.3273 0.4142 0.4403 0.4337 0.4247 0.4180 0.4132 0.4093 0.4060 0.4048
0.075 0.3041 0.3950 0.4426 0.4495 0.4449 0.4383 0.4323 0.4273 0.4232 0.4218
0.060 0.2746 0.3649 0.4258 0.4494 0.4566 0.4563 0.4529 0.4484 0.4438 0.4420
0.045 0.2349 0.3238 0.3868 0.4210 0.4409 0.4522 0.4580 0.4602 0.4601 0.4596
0.030 0.1792 0.2633 0.3263 0.3608 0.3844 0.4018 0.4152 0.4254 0.4332 0.4357
0.015 0.1019 0.1607 0.2160 0.2509 0.2756 0.2940 0.3083 0.3197 0.3290 0.3323
0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

viously published results (to the best of our knowledge) of steady driven cavity �ow beyond
Re¿12 500 in the literature, we decided to use Batchelor’s [3] model in order to demonstrate
the accuracy of our numerical solutions at higher Reynolds numbers. As seen in Figures 7
and 8, the u- and v-velocity pro�les change almost linearly in the core of the primary vortex
as Reynolds number increases. This would indicate that in this region the vorticity is uniform.
As Re increases thin boundary layers are developed along the solid walls and the core �uid
moves as a solid body with a uniform vorticity, in the manner suggested by Batchelor [3]. At
high Reynolds numbers the vorticity at the core of the eddy is approximately constant and
the �ow in the core is governed by

@2 
@x2

+
@2 
@y2

=C (25)

where C is the constant vorticity value. With streamfunction value being  =0 on the bound-
aries, inside the domain (x; y)= ([−0:5; 0:5]; [−0:5; 0:5]) the following expression is a solution
to Equation (25)

 =C
(
y2

2
− 1
8
+

∞∑
n=1

An cosh(2n − 1)�x cos(2n − 1)�y
)

(26)
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Table VIII. Volumetric �ow rates through a vertical
line, Q1, and a horizontal line, Q2, passing through the

geometric centre of the cavity.

Re Q1 =
| ∫ 10 u dy|

Qc
Q2 =

| ∫ 10 v dx|
Qc

1000 0.000000045 0.000000134
2500 0.000000046 0.000000344
5000 0.000000067 0.000000693
7500 0.000000090 0.000001027
10 000 0.000000114 0.000001341
12 500 0.000000143 0.000001630
15 000 0.000000163 0.000001894
17 500 0.000000259 0.000002133
20 000 0.000000557 0.000002346
21 000 0.000000705 0.000002424
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Figure 9. Computed vorticity values along a vertical line passing through the geometric
centre of the cavity, Re=1000.

where

An=
4(−1)n+1
(2n − 1)3�3 (cosh(n − 1

2 )�)
−1 (27)
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Figure 10. Computed vorticity values along a horizontal line passing through the geometric
centre of the cavity, Re=1000.

The mean square law proposed by Batchelor [3] relates the core vorticity value with the
boundary velocities. From using the relation

∮
[( x)2 + ( y)2] ds=

∮
|U |2 ds=1 (28)

where U is the boundary velocity, we can have

1
C2
=
1
6

− 16
�4

∞∑
n=1

1
(2n − 1)4(cosh(n − 1=2)�)2

+2
∫ 1

2

− 1
2

(
1
2
+ �

∞∑
n=1
(−1)n(2n − 1)An cosh(2n − 1)�x

)2
dx (29)

From the above expression, the numerical value of C (vorticity value at the core) can
be found approximately as 1.8859, in accordance with the theoretical core vorticity value of
1.886 at in�nite Re, calculated analytically by Burggraf [8] in his application of Batchelor’s
model [3], which consists of an inviscid core with uniform vorticity, coupled to boundary
layer �ows at the solid surface.
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Figure 11. Strength of vorticity at the primary vortex as a function of Reynolds number.

In Figure 11 we have plotted the variation of the vorticity value at the centre of the
primary vortex, tabulated in Table II, as a function of Reynolds number. In the same �gure,
the theoretical value of 1.8859 is shown with the dotted line. This �gure clearly shows that
our computations, in fact, in strong agreement with the mathematical theory [3, 8, 33] such
that computed values of the vorticity at the primary vortex asymptote to the theoretical in�nite
Re vorticity value as the Reynolds number increases.

4. CONCLUSIONS

Fine grid numerical solutions of the steady driven cavity �ow for Reynolds numbers up to
Re=21000 have been presented. The steady 2-D incompressible Navier–Stokes equations
in streamfunction and vorticity formulation are solved computationally using the numerical
method described. The streamfunction and vorticity equations are solved separately. For each
equation, the numerical formulation requires the solution of two tridiagonal systems, which
allows the use of large grid meshes easily. With this we have used a �ne grid mesh of
601× 601. At all Reynolds numbers, the numerical solutions converged to maximum absolute
residuals of the governing equations that were less than 10−10.
Our computations indicate that �ne grid mesh is necessary in order to obtain a steady

solution and also resolve the vortices appear at the corners of the cavity, as the Reynolds
number increases. Several unique features of the driven cavity �ow have been presented such
that the appearance of a quaternary vortex at the bottom left corner (BL3) at Reynolds number
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of 10 000 on �ne grid mesh, and a tertiary vortex at the top left corner (TL2) at Reynolds
number of 12 500. Detailed results were presented and they were compared with results found
in the literature. The presented results were found to agree well with the published numerical
solutions and with the theory as well.
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